
Efficiency of algorithms

There is often more than one way to write an 
algorithm. Sometimes one way is more efficient

Efficiency relates to use of computing 
resources and time taken to complete the 
algorithm. A quicker algorithm is more 
efficient

This often comes down to number of lines of 
code



Efficiency of algorithms

Time efficiency = how many lines of code have 
to execute



Efficiency of algorithms

When loops are involved, the number of lines of 
code needed to run the algorithm isn’t always 
clear

In general, indefinite iteration (while loop) will 
usually be more efficient than definite 
iteration (for loop)



Efficiency of algorithms

e.g. look for “o” in “wolloomooloo”

● While loop needs to look at two characters 
before it finds the o. Iterates twice

● For loop has to look at every letter - even 
though it found it quickly. So it needs to 
iterate the loop 12 times

The logic for a while loop is often a bit more 
complex and more lines of code might be needed.



Efficiency of algorithms

But look for “k” in “wolloomooloo”

● While loop needs to look at 12 characters. 
Iterates 12 times - because it never finds “k”

● For loop has to look at every letter, so it 
needs to iterate the loop 12 times

In this case there’s no difference in iterations, but 
the logic for the while loop is probably a little more 
complex…



Efficiency of algorithms

● many problems have more than one 
algorithm as a solution

● some algorithms are more efficient than 
others

● efficiency is measured by how long it takes to 
run the algorithm (lines of code)

● while loops will end sooner than for loops in 
many case. This generally makes them more 
efficient


