Sending data across a network

Data needs to be **sent across a network** all the time:

- an e-mail or SMS sent from one device to another
- a file being opened on a student machine
- music data sent to bluetooth headphones
- webpages delivered to browsers
- security updates sent to a device

You need to know the basics of **how** this is done

Data to be sent across a network

There are **256 bits** of data in this example

Many sets of data to be sent would be much bigger than this

The network could be a LAN, WAN (including the internet) or PAN - data is all transmitted the same way

10010101110100101110011000001111

The data is broken down into smaller **packets** before it is sent

This makes the sending **more efficient** and **increases security** in case a packet gets intercepted or delivered to the wrong address

> In this case each packet is 32 bits (real packets are much bigger than this)₄

0110111001000011110101010011111000011100111**001**

Headers and trailers are added to each packet. These do a number of things

• identify the **type of data**

- identify the sender and **address** to be delivered to
- include **error checking** bits in case some data is lost
 - **number the packets** so they can be put back together in the right order

include the total number of packets in the message

01101110110011

01101110100001

01101110101111

01101110111010

001000011110101010011111000011100111001

001110010101110100101110011000001111001

What specifically are these four bits Real headers and trailers are much longer than this

011001110101001011101111001010110110001

Sending data across a network

You need to know the basics:

- that data is broken down into **packets**
- that **headers** and **trailers** are added
 - that these include **addresses**
 - and identify the **order** of packets
 - and include error checking bits and that error checking can take place
- that data is routed efficiently and can be re-sent if necessary

Sending data across a network

Come back to this slide once you know about protocols

- **TCP** or **UDP** defines **how** data is split into packets. They also **reassemble packets** in the right order once data is received and do **error checking**
 - **TCP** can ask for packets to be re-sent and fully checks for errors
 - UDP can't it's more basic and designed to be quicker and does less error checking
- IP defines how to address packets and route them. It relays data across network boundaries (i.e. from the client to the network and vice versa)