Boolean Logic Gates

Computers are made up of electronic systems. They include lots of switches. Each switch can be **ON** or **OFF**.

The position of each switch can be represented using **binary** - either a **1** or a **0**.
Boolean Logic Gates

So, we can ask questions such as:

“Is this switch turned on?”

“Is electricity running through this cable?”

The answer to these questions can only ever be True or False.
Boolean Logic Gates

Variables which can be **True** or **False** are called **Boolean variables**.

So, when we ask a question which can be either True or False, this is **Boolean Logic**.

Boolean Logic is the foundation that any modern computer is based on.

Boolean logic is named after George Boole, an English mathematician who worked on it at Queens College, Cork in the mid-19th century.
Boolean Logic Gates

Logic gates are switches - usually made from diodes or transistors.

They allow **up to two** inputs to be processed.

The logic gate then generates a **single** Boolean value - True or False.
Boolean Logic Gates

- is it Friday?
- are you aged 16?
Boolean Logic Gates

Up to two inputs; one output
Boolean Logic Gates

There are four logic gates you need to know:

- AND
- OR
- XOR
- NOT

Key ideas:
- each logic gate can have up to two inputs
- each logic gate has one output - True or False
Boolean Logic Gates

Truth Tables are used to work out the range of possible outputs from a logic gate.

<table>
<thead>
<tr>
<th>Input A</th>
<th>Input B</th>
<th>Output Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You need to be able to create Truth Tables for the four basic logic gates.