
© 2021 www.bluesquarething.co.uk 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

All computer programs need to be converted into machine code 

before they can be run by a computer. 

This is true for any computer program – whether it's been written in a 

high-level programming language such as Python or a low-level 

programming language such as Assembly Language. 

To do this, we use a program translator. 

Three Types of Translator 
There are three different types of translator you need to know about: 

• assemblers 

• compilers 

• interpreters 

These are used in different ways to convert code into machine code so 

that it can be run by the CPU. 

1. Assemblers: 

Assemblers convert Assembly Language into Machine Code. 

One of the key things about assembly language code is that there is a 

1:1 equivalence (or correspondence) between the code and machine 

code – so each line of assembly code directly translates into a single 

line of machine code. This is done using the assembler. 

Each CPU type needs to have its own version of assembly language, 

although some assemblers can operate on different sorts of machine. 

2. Compilers 

Compilers are one way of converting high-level program code into 

machine code. Examples of high-level languages that use compilers 

include C and C++. 

Compilers translate the whole program before any of it is run. This takes 

more time to do – especially with a very long program. But the 

compilation creates a separate machine code file which can be saved 

as a executable file (an exe file). These run very quickly – because they 

are already translated – which is a significant advantage, especially 

when a program will be used frequently. 

It also means that: 

• the end user doesn't need to have the compiler installed on their 

computer – just to be able to run executable files 

• the end user can't see the high-level source code – so they can't 

change it, copy it, debug it or steal it. This helps software writers 

keep their copyrighted software from being stolen 

Machine code is the binary 
code that the CPU can 
process. It's 1s and 0s. 

Program Translators 

The key point here is that 
an assembler converts 
assembly language into 
machine code. 

You need to know the 
differences between the 
three types of translator 
and why each is used 

Java and C# use 
compilers to create 
something called bytecode 
– which is an intermediate 
stage. This is then 
processed using an 
interpreter – so Java uses 
both a compiler and an 
interpreter (just to be 
confusing) 

Compiled software is much 
easier for a user to run 



© 2021 www.bluesquarething.co.uk 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

2	

A problem with exe files 

Executable files can be used as a way of distributing malware such as 

viruses or Trojans. Because the user can't see inside the exe file they 

have no idea what it contains. 

You also need different exe files for different types of machine – what 

runs on a Mac won't run on a Windows system, and what runs on a 

modern system might not run on an old system – and vice versa. 

JavaScript, when it's used 
in webpages, is interpreted 
by the user's web browser 
when the page is loaded. 
This runs the code and 
does whatever the 
JavaScript is set to do 

This links to unit 6 – cyber 
security 

For example, IDLE for 
Python is available for 
Windows, Mac and Linux. 
This means it's easy to run 
the same Python program 
on any platform –so long 
as you have IDLE 

Activities: 

a) What is the key job of a program translator? Why is this necessary? 

b) Name the three types of program translator 

c) Describe what an assembler does 

d) What is the key difference between a compiler and an interpreter? 

e) Explain the advantages and disadvantages of compilers and interpreters 

3. Interpreters 

Interpreters also convert high-level programs into machine code, but do 

it in a different way. Examples of high-level languages which use 

interpreters include Python, Perl and Ruby. 

An interpreter works through the high-level program code line by line, 

converting it as the program runs. So each instruction is translated into 

machine code as it is actually processed by the CPU. 

This means it takes longer to run the program. This is particularly true if 

the program includes long loops with many iterations – the contents of 

the loop are translated each time the loop is worked through. 

It also means that sections of code which are never run aren't 

translated. So if a user has a choice and goes down one route, the 

other part of the program will never be translated – which is more 

efficient, but can hide errors. 

It also means that: 

• users must have the interpreter installed on their machine – which 

is time and hassle and may be beyond some users 

• users can see the source code – so they can change it, copy it, 

debug it and steal it 

• developing programs might be easier using interpreted 

languages – you can find errors and debug more easily 

• interpreted programs can be run on multiple platforms much 

more easily – so long as the interpreter is available 

Interpreted languages are particularly good for small programs which 

might need to be run quickly – for example, the JavaScript on the 

webpage you downloaded this file from. 

The differences between 
an interpreter and a 
compiler are important to 
know. 


