Translators

Every instruction, written in whatever
programming language, has to be converted

into machine code in order to be executed by
the CPU

e different CPUs have a different set of
machine code instructions they understand

This requires the use of a translator



Translators

Three types of translator:

e assembler
e compiler

e interpreter



Translators

Assemblers:

e used to turn assembly code into machine
code

e 1:1 correspondence, so each line of assembly
code = 1 machine code instruction

e all code assembled in one go

e efficient use of hardware and memory - so
programs run quickly

Assemblers work with one set of processors



Translators

E languages
Compilers: s

Used to turn a high level language into machine
code (it compiles the code)

e breaks instructions down into small steps

e translates the whole program before running it — which
takes time if done each time

e creates an executable file (in machine code) which can be
run by an end user (an exe file)

e exe files run quicker as the translation is already done

e end user doesn't require the compiler — just the exe file

e end user can't see (or change, or copy, or steal) the
source code




Translators

Interpreter: language

Used to work through a high-level program
creating code (it interprets the code)

translates the program line by line as it is running it

breaks each instruction down into small steps

some of the program may work before a crash — useful

for development testing

no exe file —so end user requires the interpreter
interpreter needs to run each time the program runs -
takes longer then an exe Ffile

end user needs the interpreter

end user can see (change, copy, or steal) the source code s



Translators

Interpreter:

Does not directly create machine code.

Works through the code using machine code
subroutines within its own code to carry out
commands



Translators

Assembler — converts assembly code into
machine code

Compiler - fully converts high-level code into an
executable machine code file

Interpreter — works through line by line
converting high-level code whilst running the
program



