
Translators

Every instruction, written in whatever 
programming language, has to be converted 
into machine code in order to be executed by 
the CPU

● different CPUs have a different set of 
machine code instructions they understand

This requires the use of a translator

1



Translators

Three types of translator:

● assembler

● compiler

● interpreter

2



Translators

Assemblers:

● used to turn assembly code into machine 
code

● 1:1 correspondence, so each line of assembly 
code = 1 machine code instruction

● all code assembled in one go
● efficient use of hardware and memory – so 

programs run quickly

Assemblers work with one set of processors 3



Translators

Compilers:

Used to turn a high level language into machine 
code (it compiles the code)
● breaks instructions down into small steps
● translates the whole program before running it – which 

takes time if done each time
● creates an executable file (in machine code) which can be 

run by an end user (an exe file)
● exe files run quicker as the translation is already done
● end user doesn’t require the compiler – just the exe file
● end user can’t see (or change, or copy, or steal) the 

source code

C and C++ are compiled 
languages

4



Translators

Interpreter:

Used to work through a high-level program 
creating code (it interprets the code)
● translates the program line by line as it is running it
● breaks each instruction down into small steps
● some of the program may work before a crash – useful 

for development testing
● no exe file – so end user requires the interpreter
● interpreter needs to run each time the program runs – 

takes longer then an exe file
● end user needs the interpreter
● end user can see (change, copy, or steal) the source code

Python is an interpreted 
language

5



Translators

Interpreter:

Does not directly create machine code.

Works through the code using machine code 
subroutines within its own code to carry out 
commands

6



Translators

Assembler – converts assembly code into 
machine code

Compiler – fully converts high-level code into an 
executable machine code file

Interpreter – works through line by line 
converting high-level code whilst running the 
program

7


