Unit 3: Data Representation | Definitions | Key knowledge | Skills | |---|--|--| | | binary - all data and instructions decimal hexadecimal - why used binary shifts - why | convert between bin, dec and hex write numbers up to 255 in each binary addition (3 numbers) do binary shifts | | Bit [1]
Byte [1] | kilo, mega, giga, terrabytes | convert between these | | Character set [1]
Character code [1] | ASCII codeUnicode - advantages | work out a character code based
on a known code | | Bitmap [1]
Pixel [1]
Colour depth [1] | how bitmaps are represented using pixels how colour depth works image file sizes (w x h x CD) | calculate bitmap sizes in bits and Bytes convert binary data to bitmap and vice versa | | Analogue sound [1] Sampling [1/2] Sampling rate [1] Sample resolution [1] | how sound can be sampled to create a digital representation sound file sizes | calculate sound file sizes |